【BYSSJ】开源 破解小牛电动车电池BMS(附源码) N1 N1S M1 U1 均可用

STM8 | Posted by 老沙
11月 28 2018

开篇: 之前发了一个贴子 破解小牛电动车电池BMS http://bbs.mydigit.cn/read.php?tid=2497489
这贴很水,只是简单了说一下破解的过程,但就这么一点点的贡献就得到了广大网友的支持。
这让我感到深深的惭愧。。。。让我久久不能入睡。。。。。。。。。。。。。`~~~~~~~~~~~ZZZ。。。
所以我考虑把代码发出来,造福大家,但又考虑到我自己的饭碗问题。
所以这次发一个阉割的版本。这次是干货,内容包括PCB源文件,与 IAR 源代码。
阉割的部分就是电容锁定在100%。其它的部分正常。
全系列车型可用,电路是V1.1版本的,最新的是V3.31,目前还没发布汗一个
电路部分是包括电压识别的,我只是在程序上阉割了,有能力的网友可以自己加上去这个功能

需要的工具:
STLINK 一个 刷程序用的
电路板:V1.1是之前剩下的,还有6个,有需要的可以问我(有图你都找不到我,那说明你应该是搞不定)
AD,IAR

哎,算了 TB 搜 【BYSSJ】可以找到我.
下图是正事。镇楼图

干货下载(电路图+IAR 源代码):NIU_BMS_V1.1_20180810_GNU

 

 

 

 

NIU_BMS_V1.11

STM8的ADC的五种工作模式

STM8 | Posted by 老沙
10月 19 2018

STM8的ADC的五种工作模式

STM8的ADC是10位的逐次比较型模拟数字转换器,多达16个多功能的输入通道。拥有5种转换模式,转换结束可产生中断。

STM8 ADC的初始化顺序如下:

1、AD输入通道对应的IO设置为上拉输入;

2、配置AD参数,如:预分频系数、是否使用外部触发转换、是否使用施密特触发器、是否使用缓存以及是否使用扫描模式等;

3、开启ADC;

4、开启转换;

注意!开启ADC和开启转换实际上都是置位ADON。

然后就可以通过ADC_DR寄存器读取转换后的值。

l单次模式:

在单次转换模式中,ADC仅在由ADC_CSR寄存器的CH[3:0]选定的通道上完成一次转换。该模式是在当CONT位为0时通过置位ADC_CR1寄存器的ADON位来启动的。

一旦转换完成,转换后的数据存储在ADC_DR寄存器中,EOC(转换结束)标志被置EOCIE 被置位将产生一个中断。

注意!初始化的时候只能选择一个通道。转换多个通道只能通过反复重新初始化或扫描模式!

示例程序:

void adc_init(void)

{

GPIO_Init(GPIOD,GPIO_PIN_3,GPIO_MODE_IN_PU_NO_IT);//AIN4 IO设置为上拉输入

ADC1_PrescalerConfig(ADC1_PRESSEL_FCPU_D2);//预分频2

ADC1_ExternalTriggerConfig(ADC1_EXTTRIG_TIM,DISABLE);//不使用外部触发

ADC1_SchmittTriggerConfig(ADC1_SCHMITTTRIG_CHANNEL4,DISABLE);

//禁止AIN2 AIN4的施密特触发器,降低IO静态功耗

//PD5,PD6上的通道如果施密特方式禁用会导致串口无法收发数据!

ADC1_ConversionConfig(ADC1_CONVERSIONMODE_SINGLE,//单次转换

ADC1_CHANNEL_4,//只能选择一个通道!

ADC1_ALIGN_RIGHT);//右对齐

ADC1_Cmd(ENABLE);//开启ADC

}

void main( void )

{

u16value=0;

adc_init();

while(1)

{

ADC1_StartConversion();//开启一次转换一次

while(!ADC1_GetFlagStatus(ADC1_FLAG_EOC));//等待转换完成

ADC1_ClearFlag(ADC1_FLAG_EOC);//软件清除

value=(u16)ADC1_GetConversionValue();//从ADC_DR中读取ADC值

}

}

l连续模式与带缓存的连续模式:

在连换模式中,ADC在完成一次转换后就立刻开始下一次的转换。当CONT位被置位时即将ADC设为连续模式,该模式是通过置位 ADC_CR1寄存器的 ADON 位来启动的。

如果缓冲功能没有被使能(ADC_CR3寄存器的DBUF位=0),那么转换结果数据保存在ADC_DR寄存器中同时 EOC 标志被置位。如果EOCIE 位已被置位时将产生一次中断。然后开始下一次转换。

如果缓存功能被使能(DBUF=1),那么某个选定通道上的8个或者10个连续的转换结果会填满数据缓存(此时填满的是同一个通道的数据!!扫描模式时才是不同通道的数据!),当缓存被填满时,EOC(转换结束)标志被置位,如果EOCIE位已被置位,则会产生一个中断,然后一个新的转换自动开始。如果某个数据缓存寄存器在被读走之前被覆盖,OVR标志将置1。

如果要停止连续转换,可以复位清零CONT位来停止转换或者复位清零ADON位来关闭ADC的电源。

示例程序(不带缓存):

void adc_init(void)

{

GPIO_Init(GPIOD,GPIO_PIN_3,GPIO_MODE_IN_PU_NO_IT);//AIN4 IO设置为上拉输入

ADC1_PrescalerConfig(ADC1_PRESSEL_FCPU_D2);//预分频2

ADC1_ExternalTriggerConfig(ADC1_EXTTRIG_TIM,DISABLE);//不使用外部触发

ADC1_SchmittTriggerConfig(ADC1_SCHMITTTRIG_CHANNEL4,DISABLE);

//禁止AIN2 AIN4的施密特触发器,降低IO静态功耗

//PD5,PD6上的通道如果施密特方式禁用会导致串口无法收发数据!

ADC1_ConversionConfig(ADC1_CONVERSIONMODE_CONTINUOUS, //连续转换

ADC1_CHANNEL_4,//只能选择一个通道!

ADC1_ALIGN_RIGHT);//右对齐

ADC1_Cmd(ENABLE);//开启ADC

ADC1_StartConversion();//开启连续转换

}

void main( void )

{

u16value=0;

adc_init();

while(1)

{

while(!ADC1_GetFlagStatus(ADC1_FLAG_EOC));//等待转换完成

ADC1_ClearFlag(ADC1_FLAG_EOC);//软件清除

value=(u16)ADC1_GetConversionValue();//从ADC_DR中读取ADC值

}

}

示例程序(带缓存):

void adc_init(void)

{

GPIO_Init(GPIOD,GPIO_PIN_3,GPIO_MODE_IN_PU_NO_IT);//AIN4 IO设置为上拉输入

ADC1_PrescalerConfig(ADC1_PRESSEL_FCPU_D2);//预分频2

ADC1_ExternalTriggerConfig(ADC1_EXTTRIG_TIM,DISABLE);//不使用外部触发

ADC1_SchmittTriggerConfig(ADC1_SCHMITTTRIG_CHANNEL4,DISABLE);

//禁止AIN2 AIN4的施密特触发器,降低IO静态功耗

//PD5,PD6上的通道如果施密特方式禁用会导致串口无法收发数据!

ADC1_ConversionConfig(ADC1_CONVERSIONMODE_CONTINUOUS, //连续转换

ADC1_CHANNEL_4,//只能选择一个通道!

ADC1_ALIGN_RIGHT);//右对齐

ADC1_Cmd(ENABLE);//开启ADC

ADC1_StartConversion();//开启连续转换

ADC1_DataBufferCmd(ENABLE);//开启缓存

}

void main( void )

{

u16value=0;

adc_init();

while(1)

{

while(!ADC1_GetFlagStatus(ADC1_FLAG_EOC));//等待转换完成

ADC1_ClearFlag(ADC1_FLAG_EOC);//软件清除

value=0;

for(u8 i=0;i<10;i++)//

{

value+=ADC1_GetBufferValue(i);//将10个缓存中的值求和

}

value=value/10;//求出ADC的平均值

}

}

注意,只有在连续转换模式下ADC_DB寄存器才能称之为缓存,此时存储的是同一个通道多次转换的值。在单次扫描和连续扫描模式下该寄存器被用来存放不同通道的转换值。

l单次扫描模式:

该模式是用来转换从AIN0到AINn之间的一连串模拟通道,‘n’是在 ADC_CSR寄存器的CH[3:0]位中指定的通道编号(即CH[3:0]里配置第n个通道,就从通道0顺序递增逐个通道进行转换,直到第n个通道结束。例如,CH[3:0]里配置为AIN4,则对AIN0、AIN1、AIN2、AIN3、AIN4进行转换,其他通道不转换)。在扫描转换的过程中,序号 CH[3:0]位的值是被硬件自动更新的,它总保存当前正在被转换的通道编号。

单次转换模式可以在在SCAN 位被置位且CONT 位以被清零时通过置位 ADON 位来启动。

注意:当使用扫描模式时,不可以将AIN0到AINn之间通道对应的I/O口设为输出状态,因为ADC的多路选择器已经将这些I/O口的输出模块禁用了。

对于单次扫描模式,转换是从AIN0通道开始的,而且结果数据被存储在数据缓冲寄存器ADC_DBxR 中(例如,CH[3:0]里配置为AIN4,则ADC_DB0R存放AIN0的转换结果,ADC_DB1R存放AIN1的转换结果,以此类推。 ),当最后一个通道(通道‘n’)被转换完成后,EOC(转换结束)标志被置位,当EOCIE 位已被置位时将产生一个中断。

可以从缓冲寄存器中读取各个通道的转换结果值。如果某个数据缓存寄存器在被读走之前被覆盖,OVR标志将置1。

在转换序列正在进行过程中不要清零SCAN位;单次扫描模式可通过清零ADON位来立即停止。为了开启一次新SCAN扫描转换,可以通过对ADC_CR1寄存器的EOC位清零和ADON位置位来实现。

示例程序:

void adc_init(void)

{

GPIO_Init(GPIOC,GPIO_PIN_4,GPIO_MODE_IN_PU_NO_IT);//AIN2IO设置为上拉输入

GPIO_Init(GPIOD,GPIO_PIN_3,GPIO_MODE_IN_PU_NO_IT);//AIN4 IO设置为上拉输入

ADC1_PrescalerConfig(ADC1_PRESSEL_FCPU_D2);//预分频2

ADC1_ExternalTriggerConfig(ADC1_EXTTRIG_TIM,DISABLE);//不使用外部触发

ADC1_SchmittTriggerConfig(ADC1_SCHMITTTRIG_CHANNEL4,DISABLE);

//禁止AIN2 AIN4的施密特触发器,降低IO静态功耗

//PD5,PD6上的通道如果施密特方式禁用会导致串口无法收发数据!

ADC1_ConversionConfig(ADC1_CONVERSIONMODE_SINGLE,//单次转换

ADC1_CHANNEL_4,//配置通道号最大的那个

ADC1_ALIGN_RIGHT);//右对齐

ADC1_Cmd(ENABLE);//开启ADC

ADC1_ScanModeCmd(ENABLE);//开启扫描模式

}

void main( void )

{

u16value1=0;

u16value2=0;

adc_init();

while(1)

{

ADC1_StartConversion();//开启一次转换

while(!ADC1_GetFlagStatus(ADC1_FLAG_EOC));//等待转换完成

ADC1_ClearFlag(ADC1_FLAG_EOC);//软件清除

value1=(u16)ADC1_GetBufferValue(ADC1_SCHMITTTRIG_CHANNEL2)//读取AIN2的值

value2=(u16)ADC1_GetBufferValue(ADC1_SCHMITTTRIG_CHANNEL4)//读取AIN4的值

}

}

l连续扫描模式:

该模式和单次扫描模式相近,只是每一次在最后通道转换完成时,一次新的从通道0到通道n扫

描转换会自动开始。如果某个数据缓存寄存器在被读走之前被覆盖,OVR标志将置1。连续扫描模式是在当SCAN位和CONT位已被置时,通过置位ADON位来启动的。在转换序列正在进行过程中不要清零SCAN位。

连续扫描模式可以通过清零ADON位来立即停止。另外一种选择就是当转换过程中清除CONT位那么转换会在下一次的最后一个通道转换完成时停止。

注意:在扫描模式(连续扫描模式)中,不要使用位操作指令(BRES)去清除EOC标志位,这是因为该指令是对整个ADC_CSR寄存器的一个读-修改-写操作。从CH[3:0]寄存器中读取当前的通道编号和写回该寄存器,将会改变扫描系列的最后通道编号。在连续扫描模式中正确的清除EOC标志位的方法是 个RAM变量中载入一个字节到ADC_CSR寄存器,这样来清除EOC标志位同时还重新载入扫描系列新的最后通道编号。

笔者实验发现,位操作指令只在连续扫描模式中会清除CH[3:0]寄存器中的值,但并不影响其他值。因此将ADC_CSR中的值读出,再将CH[3:0]中原来通道号加入进去,最后重新写入ADC_CSR中即可。写法如下:

ADC1->CSR = (uint8_t)(ADC1->CSR &(~ADC1_FLAG_EOC)|ADC1_CHANNEL_n);

注:ADC1_CHANNEL_n表示扫描到那个通道结束。

示例程序:

void adc_init(void)

{

GPIO_Init(GPIOC,GPIO_PIN_4,GPIO_MODE_IN_PU_NO_IT);//AIN2IO设置为上拉输入

GPIO_Init(GPIOD,GPIO_PIN_3,GPIO_MODE_IN_PU_NO_IT);//AIN4 IO设置为上拉输入

ADC1_PrescalerConfig(ADC1_PRESSEL_FCPU_D2);//预分频2

ADC1_ExternalTriggerConfig(ADC1_EXTTRIG_TIM,DISABLE);//不使用外部触发

ADC1_SchmittTriggerConfig(ADC1_SCHMITTTRIG_CHANNEL4,DISABLE);

//禁止AIN2 AIN4的施密特触发器,降低IO静态功耗

//PD5,PD6上的通道如果施密特方式禁用会导致串口无法收发数据!

ADC1_ConversionConfig(ADC1_CONVERSIONMODE_CONTINUOUS, //连续转换

ADC1_CHANNEL_4,//配置通道号最大的那个

ADC1_ALIGN_RIGHT);//右对齐

ADC1_Cmd(ENABLE);//开启ADC

ADC1_ScanModeCmd(ENABLE);//开启扫描模式

ADC1_StartConversion();//开启转换

}

void main( void )

{

u16value1=0;

u16value2=0;

adc_init();

while(1)

{

while(!ADC1_GetFlagStatus(ADC1_FLAG_EOC));//等待转换完成

ADC1->CSR = (uint8_t)(ADC1->CSR &(~ADC1_FLAG_EOC)|ADC1_CHANNEL_4);//软件清除

value1=(u16)ADC1_GetBufferValue(ADC1_SCHMITTTRIG_CHANNEL2)//读取AIN2的值

value2=(u16)ADC1_GetBufferValue(ADC1_SCHMITTTRIG_CHANNEL4)//读取AIN4的值

}

}

至此,STM8的ADC的5种工作模式全部介绍完毕。总结一下学习经验就是仔细对照芯片手册编写程序,然后进行仿真调试,观察寄存器中的值的变化,从中领悟手册中的意思。

Solidworks 开启 Realview

其它工具 | Posted by 老沙
1月 05 2018

Windows Registry Editor Version 5.00
; 开启 SolidWorks 2017 RealView 视图功能
; 其中GeForce GT 635M/PCIe/SSE2 为自己显卡的名称,在HKEY_CURRENT_USER\SOFTWARE\SolidWorks
\SOLIDWORKS 2017\Performance\Graphics\Hardware\Current当中可以看到
[HKEY_CURRENT_USER\SOFTWARE\SolidWorks\SOLIDWORKS 2017\Performance\Graphics\Hardware\Gl2Shaders\NV40\GeForce GT 635M/PCIe/SSE2]
“Workarounds”=dword:00040408
[HKEY_CURRENT_USER\SOFTWARE\SolidWorks\SOLIDWORKS 2017\Performance\Graphics\Hardware\Gl2Shaders\NV40\GeForce GT 635M/PCIe/SSE2\V001_FG_P614108426_R816119100]
“Workarounds”=dword:00060408

AIS-AIR 空气净化器官网 小杰SSJ

STM8, 个人的心情空间, 硬件相关 | Posted by 老沙
12月 29 2017

买了一个AIS-AIR 空气净化器

非常好用,低风量十分安静,可以睡觉用

高风量暴力,那个大风吹呀吹。。。。。

官网:

淘宝店:

https://kumouse.taobao.com/?spm=2013.1.1000126.d21.6b7f1849L7JcBE

https://item.taobao.com/item.htm?spm=a230r.7195193.1997079397.8.lhcQLr&id=562691358312&abbucket=17

新的SSD 镁光 CT275MX300SSD1

心情空间 | Posted by 老沙
12月 15 2017

openwrt 加载usb过程

LINUX | Posted by 老沙
8月 20 2017

opkg update

opkg install kmod-usb-core

opkg install kmod-usb-ohci #安装usb ohci控制器驱动
#opkg install kmod-usb-uhci  #UHCI USB控制器
opkg install kmod-usb2 #安装usb2.0
opkg install kmod-usb-storage #安装usb存储设备驱动
opkg install kmod-fs-ext3 #安装ext3分区格式支持组件
opkg install mount-utils #挂载卸载工具
opkg install ntfs-3g #挂载NTFS
opkg install kmod-fs-vfat #挂载FAT
opkg install block-mount
opkg install fdisk

opkg install usbutils #安装了这个后可以用 lsusb

挂载Swap分区
###在/mnt/sda1/下创建一个64M的交换文件
dd if=/dev/zero of=/mnt/sda1/swapfile bs=1024 count=62142
###将这个交换文件用作Swap分区
mkswap /mnt/sda1/swapfile
###启用活动分区
swapon /mnt/sda1/swapfile

###停止
swapoff /mnt/sda1/swapfile

 

openwrt 格盘

opkg update

opkg install e2fsprogs    #安装格盘软件

mkfs.ext4 /dev/sda1       #格etx4

mkfs.ext3 /dev/sda1       #格etx3

mkfs.ext2 /dev/sda1       #格etx2

 

 

挂载windows共享文件 cifs 

opkg install kmod-nls-utf8
opkg install kmod-fs-cifs

mkdir /mnt/share
mount -t cifs //192.168.1.2/tool /mnt/share -o username=administrator,password=123456,,nounix,noserverino,iocharset=utf8

 

利用NETLINK检测USB热插拔的C语言实现

LINUX C & ARM & C51 | Posted by 老沙
8月 20 2017

做嵌入式开发,尤其在网关、路由器或者其他支持USB设备的终端上,为了提高用户体验,我们常常需要支持自动识别并挂载USB设备功能。某些应用程序,在使用USB设备的过程中,也希望能够侦测到USB断开事件,不至于某些工作因为USB已经不存在而白做。在Linux下,我们主要有两种办法检测USB热插拔。
第一种便是定时检查/proc/scsi/scsi文件,该文件内会按照标准格式保存着当前设备内挂载的存储介质基本信息,如果在PC端,除了硬盘(ATA)、光驱(CD-ROM)外,就是USB设备(Direct-Access)了,轮询该scsi文件,检查文件内是否新增或减少数据便可实现自动侦测USB热插拔的效果。但是这种方法对于热插拔(hotplug)设备,如U盘,效果就没那么理想了,因为我们不知道设备什么时候插上,又是什么时候被拔掉了,只能验证当前是否已经插上或者已经拔除的事实。于是便有了另一种办法,我们采用一种特殊类的的文件描述符(套结字)专门用于Linux内核跟用户空间之间的异步通信,这种技术通常被成为NETLINK。
由于NETLINK是linux内置功能,所以使用起来很简单:创建一个AF_NETLINK协议族下NETLINK_KOBJECT_UEVENT类型的特殊文件描述符(套结字)CppLive,然后利用setsocketopt允许该文件描述符(套结字)复用其他端口,再利用band函数将自身进程绑定到特殊文件描述符(套结字)CppLive,最后利用select在while循环内监听CppLive是否可读,如果可读则调用recv接收Linux系统内核传递过来的数据并打印出来,这些输出便是USB热插拔信息。当然你也可以个性化地处理来自内核的热插拔信息,让程序变得更加智能以及人性化。

利用NETLINK检测USB热插拔的C语言实现代码如下:

  1. #include <stdio.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <fcntl.h>
  5. #include <sys/socket.h>
  6. #include <linux/netlink.h>
  7. #define UEVENT_BUFFER_SIZE 2048
  8. int main(void)
  9. {
  10.     struct sockaddr_nl client;
  11.     struct timeval tv;
  12.     int CppLive, rcvlen, ret;
  13.     fd_set fds;
  14.     int buffersize = 1024;
  15.     CppLive = socket(AF_NETLINK, SOCK_RAW, NETLINK_KOBJECT_UEVENT);
  16.     memset(&client, 0, sizeof(client));
  17.     client.nl_family = AF_NETLINK;
  18.     client.nl_pid = getpid();
  19.     client.nl_groups = 1; /* receive broadcast message*/
  20.     setsockopt(CppLive, SOL_SOCKET, SO_RCVBUF, &buffersize, sizeof(buffersize));
  21.     bind(CppLive, (struct sockaddr*)&client, sizeof(client));
  22.     while (1) {
  23.         char buf[UEVENT_BUFFER_SIZE] = { 0 };
  24.         FD_ZERO(&fds);
  25.         FD_SET(CppLive, &fds);
  26.         tv.tv_sec = 0;
  27.         tv.tv_usec = 100 * 1000;
  28.         ret = select(CppLive + 1, &fds, NULL, NULL, &tv);
  29.         if(ret < 0)
  30.             continue;
  31.         if(!(ret > 0 && FD_ISSET(CppLive, &fds)))
  32.             continue;
  33.         /* receive data */
  34.         rcvlen = recv(CppLive, &buf, sizeof(buf), 0);
  35.         if (rcvlen > 0) {
  36.             printf(“%s\n”, buf);
  37.             /*You can do something here to make the program more perfect!!!*/
  38.         }
  39.     }
  40.     close(CppLive);
  41.     return 0;
  42. }

运行程序,测试U盘插入/拔除,输出如下:

  1. add@/devices/pci0000:00/0000:00:1d.7/usb2/2-1
  2. add@/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-1:1.0
  3. add@/module/usb_storage
  4. add@/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-1:1.0/host6
  5. add@/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-1:1.0/host6/scsi_host/host6
  6. add@/bus/usb/drivers/usb-storage
  7. add@/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-1:1.0/host6/target6:0:0
  8. add@/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-1:1.0/host6/target6:0:0/6:0:0:0
  9. add@/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-1:1.0/host6/target6:0:0/6:0:0:0/scsi_disk/6:0:0:0
  10. add@/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-1:1.0/host6/target6:0:0/6:0:0:0/scsi_device/6:0:0:0
  11. add@/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-1:1.0/host6/target6:0:0/6:0:0:0/scsi_generic/sg2
  12. add@/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-1:1.0/host6/target6:0:0/6:0:0:0/bsg/6:0:0:0
  13. change@/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-1:1.0/host6/target6:0:0/6:0:0:0
  14. add@/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-1:1.0/host6/target6:0:0/6:0:0:0/block/sdb
  15. add@/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-1:1.0/host6/target6:0:0/6:0:0:0/block/sdb/sdb4
  16. add@/devices/virtual/bdi/8:16
  17. add@/module/fat
  18. add@/kernel/slab/fat_cache
  19. add@/kernel/slab/fat_inode_cache
  20. add@/module/vfat
  21. add@/module/nls_cp437
  22. add@/module/nls_iso8859_1
  23. remove@/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-1:1.0/host6/target6:0:0/6:0:0:0/bsg/6:0:0:0
  24. remove@/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-1:1.0/host6/target6:0:0/6:0:0:0/scsi_generic/sg2
  25. remove@/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-1:1.0/host6/target6:0:0/6:0:0:0/scsi_device/6:0:0:0
  26. remove@/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-1:1.0/host6/target6:0:0/6:0:0:0/scsi_disk/6:0:0:0
  27. remove@/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-1:1.0/host6/target6:0:0/6:0:0:0/block/sdb/sdb4
  28. remove@/devices/virtual/bdi/8:16
  29. remove@/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-1:1.0/host6/target6:0:0/6:0:0:0/block/sdb
  30. remove@/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-1:1.0/host6/target6:0:0/6:0:0:0
  31. remove@/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-1:1.0/host6/scsi_host/host6
  32. remove@/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-1:1.0/host6
  33. remove@/devices/pci0000:00/0000:00:1d.7/usb2/2-1/2-1:1.0
  34. remove@/devices/pci0000:00/0000:00:1d.7/usb2/2-1
  35. remove@/host6/target6:0:0

Redis常用数据类型介绍、使用场景及其操作命令

LINUX | Posted by 老沙
8月 12 2017

Redis目前支持5种数据类型,分别是:

  1. String(字符串)
  2. List(列表)
  3. Hash(字典)
  4. Set(集合)
  5. Sorted Set(有序集合)

下面就分别介绍这五种数据类型及其相应的操作命令。

1. String(字符串)

String是简单的 key-value 键值对,value 不仅可以是 String,也可以是数字。String在redis内部存储默认就是一个字符串,被redisObject所引用,当遇到incr,decr等操作时会转成数值型进行计算,此时redisObject的encoding字段为int。

String在redis内部存储默认就是一个字符串,被redisObject所引用,当遇到incr,decr等操作时会转成数值型进行计算,此时redisObject的encoding字段为int。

应用场景

String是最常用的一种数据类型,普通的key/value存储都可以归为此类,这里就不所做解释了。

相关命令

SET key value                   设置key=value
GET key                         或者键key对应的值
GETRANGE key start end          得到字符串的子字符串存放在一个键
GETSET key value                设置键的字符串值,并返回旧值
GETBIT key offset               返回存储在键位值的字符串值的偏移
MGET key1 [key2..]              得到所有的给定键的值
SETBIT key offset value         设置或清除该位在存储在键的字符串值偏移
SETEX key seconds value         键到期时设置值
SETNX key value                 设置键的值,只有当该键不存在
SETRANGE key offset value       覆盖字符串的一部分从指定键的偏移
STRLEN key                      得到存储在键的值的长度
MSET key value [key value...]   设置多个键和多个值
MSETNX key value [key value...] 设置多个键多个值,只有在当没有按键的存在时
PSETEX key milliseconds value   设置键的毫秒值和到期时间
INCR key                        增加键的整数值一次
INCRBY key increment            由给定的数量递增键的整数值
INCRBYFLOAT key increment       由给定的数量递增键的浮点值
DECR key                        递减键一次的整数值
DECRBY key decrement            由给定数目递减键的整数值
APPEND key value                追加值到一个键

其中用于操作管理键的命令有:

DEL key                         如果存在删除键
DUMP key                        返回存储在指定键的值的序列化版本
EXISTS key                      此命令检查该键是否存在
EXPIRE key seconds              指定键的过期时间
EXPIREAT key timestamp          指定的键过期时间。在这里,时间是在Unix时间戳格式
PEXPIRE key milliseconds        设置键以毫秒为单位到期
PEXPIREAT key milliseconds-timestamp        设置键在Unix时间戳指定为毫秒到期
KEYS pattern                    查找与指定模式匹配的所有键
MOVE key db                     移动键到另一个数据库
PERSIST key                     移除过期的键
PTTL key                        以毫秒为单位获取剩余时间的到期键。
TTL key                         获取键到期的剩余时间。
RANDOMKEY                       从Redis返回随机键
RENAME key newkey               更改键的名称
RENAMENX key newkey             重命名键,如果新的键不存在
TYPE key                        返回存储在键的数据类型的值。

使用示例

redis 127.0.0.1:6379> set baidu http://www.baidu
OK
redis 127.0.0.1:6379> append baidu .com
(integer) 20
redis 127.0.0.1:6379> get baidu
"http://www.baidu.com"
redis 127.0.0.1:6379> set visitors 0
OK
redis 127.0.0.1:6379> incr visitors
(integer) 1
redis 127.0.0.1:6379> incr visitors
(integer) 2
redis 127.0.0.1:6379> get visitors
"2"
redis 127.0.0.1:6379> incrby visitors 100
(integer) 102
redis 127.0.0.1:6379> get visitors
"102"
redis 127.0.0.1:6379> type baidu
string
redis 127.0.0.1:6379> type visitors
string
redis 127.0.0.1:6379> ttl baidu
(integer) -1
redis 127.0.0.1:6379> rename baidu baidu-site
OK
redis 127.0.0.1:6379> get baidu
(nil)
redis 127.0.0.1:6379> get baidu-site
"http://www.baidu.com"

2. List(列表)

Redis列表是简单的字符串列表,可以类比到C++中的std::list,简单的说就是一个链表或者说是一个队列。可以从头部或尾部向Redis列表添加元素。列表的最大长度为2^32 – 1,也即每个列表支持超过40亿个元素。

Redis list的实现为一个双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销,Redis内部的很多实现,包括发送缓冲队列等也都是用的这个数据结构。

应用场景

Redis list的应用场景非常多,也是Redis最重要的数据结构之一,比如twitter的关注列表、粉丝列表等都可以用Redis的list结构来实现,再比如有的应用使用Redis的list类型实现一个简单的轻量级消息队列,生产者push,消费者pop/bpop。

相关命令

  • BLPOP
    BLPOP key1 [key2 ] timeout 取出并获取列表中的第一个元素,或阻塞,直到有可用
  • BRPOP
    BRPOP key1 [key2 ] timeout 取出并获取列表中的最后一个元素,或阻塞,直到有可用
  • BRPOPLPUSH
    BRPOPLPUSH source destination timeout 从列表中弹出一个值,它推到另一个列表并返回它;或阻塞,直到有可用
  • LINDEX
    LINDEX key index 从一个列表其索引获取对应的元素
  • LINSERT
    LINSERT key BEFORE|AFTER pivot value 在列表中的其他元素之后或之前插入一个元素
  • LLEN
    LLEN key 获取列表的长度
  • LPOP
    LPOP key 获取并取出列表中的第一个元素
  • LPUSH
    LPUSH key value1 [value2] 在前面加上一个或多个值的列表
  • LPUSHX
    LPUSHX key value 在前面加上一个值列表,仅当列表中存在
  • LRANGE
    LRANGE key start stop 从一个列表获取各种元素
  • LREM
    LREM key count value 从列表中删除元素
  • LSET
    LSET key index value 在列表中的索引设置一个元素的值
  • LTRIM
    LTRIM key start stop 修剪列表到指定的范围内
  • RPOP
    RPOP key 取出并获取列表中的最后一个元素
  • RPOPLPUSH
    RPOPLPUSH source destination 删除最后一个元素的列表,将其附加到另一个列表并返回它
  • RPUSH
    RPUSH key value1 [value2] 添加一个或多个值到列表
  • RPUSHX
    RPUSHX key value 添加一个值列表,仅当列表中存在

使用示例

redis 127.0.0.1:6379> lpush list1 redis
(integer) 1
redis 127.0.0.1:6379> lpush list1 hello
(integer) 2
redis 127.0.0.1:6379> rpush list1 world
(integer) 3
redis 127.0.0.1:6379> llen list1
(integer) 3
redis 127.0.0.1:6379> lrange list1 0 3
1) "hello"
2) "redis"
3) "world"
redis 127.0.0.1:6379> lpop list1
"hello"
redis 127.0.0.1:6379> rpop list1
"world"
redis 127.0.0.1:6379> lrange list1 0 3
1) "redis"

3. Hash(字典,哈希表)

类似C#中的dict类型或者C++中的hash_map类型。

Redis Hash对应Value内部实际就是一个HashMap,实际这里会有2种不同实现,这个Hash的成员比较少时Redis为了节省内存会采用类似一维数组的方式来紧凑存储,而不会采用真正的HashMap结构,对应的value redisObject的encoding为zipmap,当成员数量增大时会自动转成真正的HashMap,此时encoding为ht。

应用场景

假设有多个用户及对应的用户信息,可以用来存储以用户ID为key,将用户信息序列化为比如json格式做为value进行保存。

相关命令

  • HDEL
    HDEL key field[field…] 删除对象的一个或几个属性域,不存在的属性将被忽略
  • HEXISTS
    HEXISTS key field 查看对象是否存在该属性域
  • HGET
    HGET key field 获取对象中该field属性域的值
  • HGETALL
    HGETALL key 获取对象的所有属性域和值
  • HINCRBY
    HINCRBY key field value 将该对象中指定域的值增加给定的value,原子自增操作,只能是integer的属性值可以使用
  • HINCRBYFLOAT
    HINCRBYFLOAT key field increment 将该对象中指定域的值增加给定的浮点数
  • HKEYS
    HKEYS key 获取对象的所有属性字段
  • HVALS
    HVALS key 获取对象的所有属性值
  • HLEN
    HLEN key 获取对象的所有属性字段的总数
  • HMGET
    HMGET key field[field…] 获取对象的一个或多个指定字段的值
  • HSET
    HSET key field value 设置对象指定字段的值
  • HMSET
    HMSET key field value [field value …] 同时设置对象中一个或多个字段的值
  • HSETNX
    HSETNX key field value 只在对象不存在指定的字段时才设置字段的值
  • HSTRLEN
    HSTRLEN key field 返回对象指定field的value的字符串长度,如果该对象或者field不存在,返回0.
  • HSCAN
    HSCAN key cursor [MATCH pattern] [COUNT count] 类似SCAN命令

使用示例

127.0.0.1:6379> hset person name jack
(integer) 1
127.0.0.1:6379> hset person age 20
(integer) 1
127.0.0.1:6379> hset person sex famale
(integer) 1
127.0.0.1:6379> hgetall person
1) "name"
2) "jack"
3) "age"
4) "20"
5) "sex"
6) "famale"
127.0.0.1:6379> hkeys person
1) "name"
2) "age"
3) "sex"
127.0.0.1:6379> hvals person
1) "jack"
2) "20"
3) "famale"

4. Set(集合)

可以理解为一堆值不重复的列表,类似数学领域中的集合概念,且Redis也提供了针对集合的求交集、并集、差集等操作。

set 的内部实现是一个 value永远为null的HashMap,实际就是通过计算hash的方式来快速排重的,这也是set能提供判断一个成员是否在集合内的原因。

应用场景

Redis set对外提供的功能与list类似是一个列表的功能,特殊之处在于set是可以自动排重的,当你需要存储一个列表数据,又不希望出现重复数据时,set是一个很好的选择,并且set提供了判断某个成员是否在一个set集合内的重要接口,这个也是list所不能提供的。

又或者在微博应用中,每个用户关注的人存在一个集合中,就很容易实现求两个人的共同好友功能。

相关命令

  • SADD
    SADD key member [member …] 添加一个或者多个元素到集合(set)里
  • SACRD
    SCARD key 获取集合里面的元素数量
  • SDIFF
    SDIFF key [key …] 获得队列不存在的元素
  • SDIFFSTORE
    SDIFFSTORE destination key [key …] 获得队列不存在的元素,并存储在一个关键的结果集
  • SINTER
    SINTER key [key …] 获得两个集合的交集
  • SINTERSTORE
    SINTERSTORE destination key [key …] 获得两个集合的交集,并存储在一个集合中
  • SISMEMBER
    SISMEMBER key member 确定一个给定的值是一个集合的成员
  • SMEMBERS
    SMEMBERS key 获取集合里面的所有key
  • SMOVE
    SMOVE source destination member 移动集合里面的一个key到另一个集合
  • SPOP
    SPOP key [count] 获取并删除一个集合里面的元素
  • SRANDMEMBER
    SRANDMEMBER key [count] 从集合里面随机获取一个元素
  • SREM
    SREM key member [member …] 从集合里删除一个或多个元素,不存在的元素会被忽略
  • SUNION
    SUNION key [key …] 添加多个set元素
  • SUNIONSTORE
    SUNIONSTORE destination key [key …] 合并set元素,并将结果存入新的set里面
  • SSCAN
    SSCAN key cursor [MATCH pattern] [COUNT count] 迭代set里面的元素

使用示例

redis> SADD myset "Hello"
(integer) 1
redis> SADD myset "World"
(integer) 1
redis> SMEMBERS myset
1) "World"
2) "Hello"
redis> SADD myset "one"
(integer) 1
redis> SISMEMBER myset "one"
(integer) 1
redis> SISMEMBER myset "two"
(integer) 0

使用集合数据结构的典型用例是朋友名单的实现:

redis 127.0.0.1:6379> sadd friends:leto ghanima paul chani jessica
(integer) 4
redis 127.0.0.1:6379> sadd friends:duncan paul jessica alia
(integer) 3
redis 127.0.0.1:6379> sismember friends:leto jessica
(integer) 1   #不管一个用户有多少个朋友,我们都能高效地(O(1)时间复杂度)识别出用户X是不是用户Y的朋友
redis 127.0.0.1:6379> sismember friends:leto vladimir
(integer) 0
redis 127.0.0.1:6379> sinter friends:leto friends:duncan    #我们可以查看两个或更多的人是不是有共同的朋友
1) "paul"
2) "jessica"
redis 127.0.0.1:6379> sinterstore friends:leto_duncan friends:leto friends:duncan # 可以在一个新的关键字里存储结果
(integer) 2

5. Sorted Set(有序集合)

Redis有序集合类似Redis集合,不同的是增加了一个功能,即集合是有序的。一个有序集合的每个成员带有分数,用于进行排序。

Redis有序集合添加、删除和测试的时间复杂度均为O(1)(固定时间,无论里面包含的元素集合的数量)。列表的最大长度为2^32- 1元素(4294967295,超过40亿每个元素的集合)。

Redis sorted set的内部使用HashMap和跳跃表(SkipList)来保证数据的存储和有序,HashMap里放的是成员到score的映射,而跳跃表里存放的是所有的成员,排序依据是HashMap里存的score,使用跳跃表的结构可以获得比较高的查找效率,并且在实现上比较简单。

使用场景

Redis sorted set的使用场景与set类似,区别是set不是自动有序的,而sorted set可以通过用户额外提供一个优先级(score)的参数来为成员排序,并且是插入有序的,即自动排序。当你需要一个有序的并且不重复的集合列表,那么可以选择sorted set数据结构,比如twitter 的public timeline可以以发表时间作为score来存储,这样获取时就是自动按时间排好序的。

又比如用户的积分排行榜需求就可以通过有序集合实现。还有上面介绍的使用List实现轻量级的消息队列,其实也可以通过Sorted Set实现有优先级或按权重的队列。

相关命令

  • ZADD
    ZADD key score1 member1 [score2 member2] 添加一个或多个成员到有序集合,或者如果它已经存在更新其分数
  • ZCARD
    ZCARD key 得到的有序集合成员的数量
  • ZCOUNT
    ZCOUNT key min max 计算一个有序集合成员与给定值范围内的分数
  • ZINCRBY
    ZINCRBY key increment member 在有序集合增加成员的分数
  • ZINTERSTORE
    ZINTERSTORE destination numkeys key [key …] 多重交叉排序集合,并存储生成一个新的键有序集合。
  • ZLEXCOUNT
    ZLEXCOUNT key min max 计算一个给定的字典范围之间的有序集合成员的数量
  • ZRANGE
    ZRANGE key start stop [WITHSCORES] 由索引返回一个成员范围的有序集合(从低到高)
  • ZRANGEBYLEX
    ZRANGEBYLEX key min max [LIMIT offset count]返回一个成员范围的有序集合(由字典范围)
  • ZRANGEBYSCORE
    ZRANGEBYSCORE key min max [WITHSCORES] [LIMIT] 返回有序集key中,所有 score 值介于 min 和 max 之间(包括等于 min 或 max )的成员,有序集成员按 score 值递增(从小到大)次序排列
  • ZRANK
    ZRANK key member 确定成员的索引中有序集合
  • ZREM
    ZREM key member [member …] 从有序集合中删除一个或多个成员,不存在的成员将被忽略
  • ZREMRANGEBYLEX
    ZREMRANGEBYLEX key min max 删除所有成员在给定的字典范围之间的有序集合
  • ZREMRANGEBYRANK
    ZREMRANGEBYRANK key start stop 在给定的索引之内删除所有成员的有序集合
  • ZREMRANGEBYSCORE
    ZREMRANGEBYSCORE key min max 在给定的分数之内删除所有成员的有序集合
  • ZREVRANGE
    ZREVRANGE key start stop [WITHSCORES] 返回一个成员范围的有序集合,通过索引,以分数排序,从高分到低分
  • ZREVRANGEBYSCORE
    ZREVRANGEBYSCORE key max min [WITHSCORES] 返回一个成员范围的有序集合,以socre排序从高到低
  • ZREVRANK
    ZREVRANK key member 确定一个有序集合成员的索引,以分数排序,从高分到低分
  • ZSCORE
    ZSCORE key member 获取给定成员相关联的分数在一个有序集合
  • ZUNIONSTORE
    ZUNIONSTORE destination numkeys key [key …] 添加多个集排序,所得排序集合存储在一个新的键
  • ZSCAN
    ZSCAN key cursor [MATCH pattern] [COUNT count] 增量迭代排序元素集和相关的分数

使用示例

redis 127.0.0.1:6379> zadd dbs 100 redis
(integer) 1
redis 127.0.0.1:6379> zadd dbs 98 memcached
(integer) 1
redis 127.0.0.1:6379> zadd dbs 99 mongodb
(integer) 1
redis 127.0.0.1:6379> zadd dbs 99 leveldb
(integer) 1
redis 127.0.0.1:6379> zcard dbs
(integer) 4
redis 127.0.0.1:6379> zcount dbs 10 99
(integer) 3
redis 127.0.0.1:6379> zrank dbs leveldb
(integer) 1
redis 127.0.0.1:6379> zrank dbs other
(nil)
redis 127.0.0.1:6379> zrangebyscore dbs 98 100
1) "memcached"
2) "leveldb"
3) "mongodb"
4) "redis"

Reference

CentOS6下 安装Redis

LINUX | Posted by 老沙
8月 12 2017

一 安装

1) 下载redis安装包
官网http://redis.io

我下载的是redis-4.0.1

解压之

make  完全后会让你动行make test 这时会用到tcl包,如果没有tcl运行make test

会报如下错误:

[root@localhost redis-4.0.1]# make test
cd src && make test
make[1]: Entering directory `/root/redis/redis-4.0.1/src’
CC Makefile.dep
make[1]: Leaving directory `/root/redis/redis-4.0.1/src’
make[1]: Entering directory `/root/redis/redis-4.0.1/src’
You need tcl 8.5 or newer in order to run the Redis test
make[1]: *** [test] 错误 1
make[1]: Leaving directory `/root/redis/redis-4.0.1/src’
make: *** [test] 错误 2

那就要安装TCL

wget http://downloads.sourceforge.net/tcl/tcl8.6.1-src.tar.gz
tar xzvf tcl8.6.1-src.tar.gz
cd tcl8.6.1/unix/
sudo ./configure
sudo make
sudo make install

就完成了,再运行进入redis目录,运行make test,如果没有问题最后会是

54 seconds – unit/aofrw
83 seconds – integration/replication
91 seconds – unit/type/list-3
101 seconds – integration/replication-psync

\o/ All tests passed without errors!

Cleanup: may take some time… OK
make[1]: Leaving directory `/root/redis/redis-4.0.1/src’

然后安装redis命令 make install

redis-server –v (查看版本命令)

[root@localhost redis-4.0.1]# redis-server -v
Redis server v=4.0.1 sha=00000000:0 malloc=jemalloc-4.0.3 bits=64 build=61447d85dd649aab

到此安装就完成了。

1 下面是配置了 创建配置文件目录,dump file 目录,进程pid目录,log目录等

配置文件一般放在/etc/下,创建redis目录

mkdir -p /var/redis/data /var/redis/log /var/redis/run

2 修改配置文件,配置参数

首先拷贝解压包下的redis.conf文件至/etc/redis

mkdir -p /etc/redis;cp redis.conf /etc/redis/

3 打开配置文件

vi /etc/redis/redis.conf

几个重要的地方:

修改端口(默认6379)

port 6379

修改pid目录

pidfile /var/redis/run/redis_6379.pid

修改dump目录

dir /var/redis/data

修改log存储目录

logfile /var/redis/log/redis.log

后台运行

daemonize yes

持久化

默认rdb,可选择是否开启aof,若开启,修改配置文件appendonly

保存退出

:wq

然后可以启动redis看看

redis-server /etc/redis/redis.conf

[root@localhost redis-4.0.1]# netstat -ntpl
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.1:6379 0.0.0.0:* LISTEN 31264/redis-server

[root@localhost redis-4.0.1]# redis-cli
127.0.0.1:6379> help
redis-cli 4.0.1
To get help about Redis commands type:
“help @<group>” to get a list of commands in <group>
“help <command>” for help on <command>
“help <tab>” to get a list of possible help topics
“quit” to exit

To set redis-cli preferences:
“:set hints” enable online hints
“:set nohints” disable online hints
Set your preferences in ~/.redisclirc
127.0.0.1:6379> quit

接下来要配置一下启动脚本

cp utils/redis_init_script /etc/init.d/redisd

 

REDISPORT=6379
EXEC=/usr/local/bin/redis-server
CLIEXEC=/usr/local/bin/redis-cli

PIDFILE=/var/redis/run/redis_${REDISPORT}.pid
CONF=”/etc/redis/redis.conf”

[root@localhost redis-4.0.1]# chmod 755 /etc/init.d/redisd

然后把/etc/init.d/redisd start加入到/etc/rc.local里,开机自启动

一切就都OK了

ESP8266/ESP8285 启动报错 csum err ets_main.c 解决办法

ESP8266/32 | Posted by 老沙
8月 06 2017

ets Jan 8 2013,rst cause:2, boot mode:(3,6)

load 0x40100000, len 25020, room 16
tail 12
chksum 0xef
ho 0 tail 12 room 4
load 0x00000000, len 0, room 12
tail 0
chksum 0xef
load 0x00000000, len 0, room 4
tail 0
chksum 0xef
csum 0xef
csum err
ets_main.c

解决办法:

FLASH刷写模式改为DOUT